Closure Property of Addition for Whole Numbers Addition of any two whole numbers results in a whole number only. We can represent it as a + b = W, where a and b are any two whole numbers, and W is the whole number set. For example, 0+21=21, here all numbers fall under the whole number set.
Closure Property Examples Add5 + 12 = 17Sum is a whole number Subtract 5 - 12 = -7 Difference not a whole number Multiply 5 x 12 = 60 Product is a whole number Divide 5/12 = 0.4166 Quotient is not a whole number
The sum of any two real numbers will result in a real number. This is known as the closure property of addition. The result will always be a real number. In general, the closure property states that the sum of any two real numbers is a unique real number.
Closure property holds for addition, subtraction and multiplication of integers. Closure property of integers under addition: The sum of any two integers will always be an integer, i.e. if a and b are any two integers, a + b will be an integer.
Closure property We can say that rational numbers are closed under addition, subtraction and multiplication. For example: (7/6)+(2/5) = 47/30. (5/6) – (1/3) = 1/2.
Answer. For any complex numbers z1 and z2, the closure law states that the sum of two complex numbers is a complex number, i.e., z1+z2 is a complex number.
The set of real numbers is closed under addition. If you add two real numbers, you will get another real number. There is no possibility of ever getting anything other than a real number. For example: 5 + 10 = 15 , 2.5 + 2.5 = 5 , 2 1 2 + 5 = 7 1 2 , 3 + 2 3 = 3 3 , etc.
The closure property of the division tells that the result of the division of two whole numbers is not always a whole number. Whole numbers are not closed under division i.e., a ÷ b is not always a whole number. From the property, we have, 14 ÷ 7 = 2 (whole number) but 7 ÷ 14 = ½ (not a whole number).
Closure property holds for addition, subtraction and multiplication of integers. Closure property of integers under addition: The sum of any two integers will always be an integer, i.e. if a and b are any two integers, a + b will be an integer.
The commutative property means, in some mathematical expressions, the order of two numbers can be switched without affecting the result. The commutative property can be used with addition and multiplication expressions. However, the commutative property can not be used with subtraction or division expressions.