Regular Languages are closed under intersection, i.e., if L1 and L2 are regular then L1 ∩ L2 is also regular. L1 and L2 are regular • L1 ∪ L2 is regular • Hence, L1 ∩ L2 = L1 ∪ L2 is regular.
Formal definition If A is a regular language, A (Kleene star) is a regular language. Due to this, the empty string language {ε} is also regular. If A and B are regular languages, then A ∪ B (union) and A • B (concatenation) are regular languages. No other languages over Σ are regular.
A regular language is one which has an FA or an RE. Regular languages are closed under union, concatenation, star, and complementation.
Regular Languages are closed under complementation, i.e., if L is regular then L = Σ∗ \ L is also regular. Proof.
Closure properties on regular languages are defined as certain operations on regular language that are guaranteed to produce regular language. Closure refers to some operation on a language, resulting in a new language that is of the same “type” as originally operated on i.e., regular.
What's more, we've seen that regular languages are closed under union, concatenation and Kleene star. This means every regular expression defines a regular language.
What are closure properties of regular languages? Regular languages are closed under complement, union, intersection, concatenation, Kleene star, reversal, homomorphism, and substitution.
Regular languages are closed under concatenation - this is demonstrable by having the accepting state(s) of one language with an epsilon transition to the start state of the next language. If we consider the language L = {a^n | n >=0}, this language is regular (it is simply a).
The set of regular languages is closed under complementation. The complement of language L, written L, is all strings not in L but with the same alphabet. The statement says that if L is a regular lan- guage, then so is L. To see this fact, take deterministic FA for L and interchange the accept and reject states.
Regular Languages are closed under intersection, i.e., if L1 and L2 are regular then L1 ∩ L2 is also regular. L1 and L2 are regular • L1 ∪ L2 is regular • Hence, L1 ∩ L2 = L1 ∪ L2 is regular.