Commutative property of addition: Changing the order of addends does not change the sum. For example, 4 + 2 = 2 + 4 . Associative property of addition: Changing the grouping of addends does not change the sum. For example, ( 2 + 3 ) + 4 = 2 + ( 3 + 4 ) .
Closure property holds for addition and multiplication of whole numbers. Closure property of whole numbers under addition: The sum of any two whole numbers will always be a whole number, i.e. if a and b are any two whole numbers, a + b will be a whole number. Example: 12 + 0 = 12. 9 + 7 = 16.
Closure Property of Addition for Natural Numbers Addition of any two natural numbers results in a natural number only. We can represent it as a + b = N, where a and b are any two natural numbers, and N is the natural number set. For example, 4+21=25, here all numbers fall under the natural number set.
For example, the set of integers is closed with respect to addition/subtraction/multiplication but it is NOT closed with respect to division.
Example 1: The addition of two real numbers is always a real number. Thus, real numbers are closed under addition. Example 2: Subtraction of two natural numbers may or may not be a natural number. Thus, natural numbers are not closed under subtraction.
Expert-Verified Answer The set {0, 1} is closed under multiplication, as all products of its elements yield results within the set. However, it is not closed under addition or subtraction since those operations can produce results outside of the set. Thus, the answer is (B) Multiplication.
Cancellation Law for Addition: If a+c = b+c, then a = b. This follows from the existence of an additive inverse (and the other laws), since Page 5 if a+c = b+c, then a+c+(−c) = b+c+(−c), so a +0= b + 0 and hence a = b. a = b.
The Cancellation law of addition states that a= b if and only if a+c = b+c which is similar to the Addition Property of Equality that says that one can add the same quantity to both sides of an equation so if you have a = b then you can add c to both sides to get that a+c = b+c.
Cancellation law for addition: If a+b=a+c, then b=c. We assume that a+b=a+c. By the Existence of Negatives Axiom, we know that there is a number y such that y+a=0.