What's more, we've seen that regular languages are closed under union, concatenation and Kleene star. This means every regular expression defines a regular language.
Proof: Observe that L \ M = L ∩ M . We already know that regular languages are closed under complement and intersection.
The set of regular languages is closed under complementation. The complement of language L, written L, is all strings not in L but with the same alphabet. The statement says that if L is a regular lan- guage, then so is L. To see this fact, take deterministic FA for L and interchange the accept and reject states.
Regular languages are closed under concatenation - this is demonstrable by having the accepting state(s) of one language with an epsilon transition to the start state of the next language. If we consider the language L = {a^n | n >=0}, this language is regular (it is simply a).
Regular languages have finite state machines, represent simple patterns, are closed under union, intersection, concatenation, and Kleene star operations.
Intersection. Theorem If L1 and L2 are regular languages, then the new language L = L1 ∩ L2 is regular. Proof By De Morgan's law, L = L1 ∩ L2 = L1 ∪ L2. By the previous two theorems this language is regular.
Closure under Union For any regular languages L and M, then L ∪ M is regular. Proof: Since L and M are regular, they have regular expressions, say: Let L = L(E) and M = L(F). Then L ∪ M = L(E + F) by the definition of the + operator.
Regular Languages are closed under intersection, i.e., if L1 and L2 are regular then L1 ∩ L2 is also regular. L1 and L2 are regular • L1 ∪ L2 is regular • Hence, L1 ∩ L2 = L1 ∪ L2 is regular.
What is closure? Recall that a set S is closed under an operation X if the output of X is in S whenever the inputs were in S. So, for example, saying that the regular languages are "closed under union" means that if P and R are regular languages, then so is the union of P and R.
In programming languages, a closure, also lexical closure or function closure, is a technique for implementing lexically scoped name binding in a language with first-class functions. Operationally, a closure is a record storing a function together with an environment.