Closure under Union For any regular languages L and M, then L ∪ M is regular. Proof: Since L and M are regular, they have regular expressions, say: Let L = L(E) and M = L(F). Then L ∪ M = L(E + F) by the definition of the + operator.
Closure property states that any operation conducted on elements within a set gives a result which is within the same set of elements. Integers are either positive, negative or zero. They are whole and not fractional. Integers are closed under addition.
Regular Languages are closed under intersection, i.e., if L1 and L2 are regular then L1 ∩ L2 is also regular. L1 and L2 are regular • L1 ∪ L2 is regular • Hence, L1 ∩ L2 = L1 ∪ L2 is regular.
No. The intersection of an infinite set of regular languages is not necessarily even computable. The closure of regular languages under infinite intersection is, in fact, all languages. The language of “all strings except s” is trivially regular.
Intersection is the easiest example to show directly. Finite-state automata are closed under intersection because we can always create a pairwise state representing the operation of both of the original automata, and accept a string only if both automata accept. This effectively runs both automata in parallel.
Let L be a regular language, and M be an NFA that accepts it. Here, δR is δ with the direction of all the arcs reversed. Thus, it is proved that L is closed under reversal.
Closure Properties of Regular Languages Given a set, a closure property of the set is an operation that when applied to members of the set always returns as its answer a member of that set. For example, the set of integers is closed under addition.
Closure property under multiplication states that any two rational numbers' product will be a rational number, i.e. if a and b are any two rational numbers, ab will also be a rational number. Example: (3/2) × (2/9) = 1/3.