The assignment problem in the general form can be stated as follows: “Given n facilities, n jobs and the effectiveness of each facility for each job, the problem is to assign each facility to one and only one job in such a way that the measure of effectiveness is optimised (Maximised or Minimised).”
The assignment problem consists of finding, in a weighted bipartite graph, a matching of a given size, in which the sum of weights of the edges is minimum. If the numbers of agents and tasks are equal, then the problem is called balanced assignment. Otherwise, it is called unbalanced assignment.
For example, suppose an accounts officer has 4 subordinates and 4 tasks. The subordinates differ in efficiency and take different time to perform each task. If one task is to be assigned to one person in such a way that the total person hours are minimised, the problem is called an assignment problem.
Lesson Summary Subtract row minima. Subtract column minima. Cover all zeros with the minimum number of lines. If the number of lines is equal to the number of rows or columns in your matrix, stop here. Create additional zeros by finding the smallest element - call it c - that isn't covered by a line.
The assignment problem consists of finding, in a weighted bipartite graph, a matching of a given size, in which the sum of weights of the edges is minimum. If the numbers of agents and tasks are equal, then the problem is called balanced assignment. Otherwise, it is called unbalanced assignment.
The assignment problem in the general form can be stated as follows: “Given n facilities, n jobs and the effectiveness of each facility for each job, the problem is to assign each facility to one and only one job in such a way that the measure of effectiveness is optimised (Maximised or Minimised).”
The assignment problem in the general form can be stated as follows: “Given n facilities, n jobs and the effectiveness of each facility for each job, the problem is to assign each facility to one and only one job in such a way that the measure of effectiveness is optimised (Maximised or Minimised).”
For example, suppose an accounts officer has 4 subordinates and 4 tasks. The subordinates differ in efficiency and take different time to perform each task. If one task is to be assigned to one person in such a way that the total person hours are minimised, the problem is called an assignment problem.